岩手医科大学医学部内科学講座リウマチ・膠原病・アレルギー内科|医歯薬総合研究所分子病態解析部門
講座紹介

研究・業績

教授プロフィール

仲哲治教授の顔写真

哲治
Tetsuji Naka

1987年富山大学医学部卒業。岸本忠三阪大医学部第3内科教授(当時)の指導の下、サイトカインシグナルの主要な伝達経路であるJAK-STATシグナル伝達経路の抑制分子であるSOCS-1を世界で初めてクローニングした。この発見は、サイトカインシグナルの負の制御機構(ブレーキシステム)を世界で最初に明らかにしたものである。その後、大阪大学医学部附属病院、国立研究開発法人医薬基盤研究所、高知大学医学部付属病院免疫難病センターを経て、2021年より現職。この間に、関節リウマチ患者血清を用いた解析から、新たな炎症性マーカーであるロイシンリッチαグリコプロテイン(LRG)を同定し、炎症性腸疾患の活動性マーカーとしての保険収載に結びつけた。現在は、SOCS遺伝子をアデノウイルスベクターに組み込んだ遺伝子治療薬の開発や、癌の手術検体の解析から同定した癌特異的な表面抗原をターゲットとする抗体医薬品製剤の開発を進めている。質の高い臨床検体から創薬シーズの探索と産官学連携により、新規医療シーズの実用化を目指す。

  • 論文被引用数
    14,332 件
  • 英語論文数
    193 報
  • h-index
    59

これまで取得してきた競争的研究費

研究費配分機関名 事業名 代表 分担
AMED 革新的がん医療実用化研究事業 4課題
AMED 産学連携医療イノベーション創出プログラム
基本スキーム (ACT-M)
1課題
AMED 臨床研究・治験基盤事業
革新的医療技術創出拠点プロジェクト関連シーズ
橋渡し研究戦略的推進プログラム シーズB
1課題
AMED 臨床研究・治験推進研究事業 (A研究) 1課題
AMED 産学連携医療イノベーション創出プログラム(ACT-MS) 1課題
AMED 難治性疾患実用化研究事業 1課題 1課題
AMED 創薬基盤推進研究事業 1課題
厚生労働省 創薬基盤推進研究事業 2課題
厚生労働省 早期探索臨床試験拠点整備事業 1課題
文部科学省 科学技術振興調整費 1課題
科学技術振興機構 知的クラスター創生事業 1課題
科学技術振興機構 科学技術総合推進費 1課題
日本学術振興会 基盤研究(B) 1課題 2課題
日本学術振興会 基盤研究(C) 3課題 6課題
日本学術振興会 挑戦的萌芽研究 2課題 1課題
日本学術振興会 萌芽研究 1課題
日本学術振興会 特定領域研究(C) 1課題
公益財団法人など 研究助成金 16課題

競争的資金の獲得実績、産学連携実績(研究代表者)

No 課題名 事業名 管轄機関 実施期間 研究費 研究ステージ
1 サイトカインシグナル阻害分子SOCSの
生体標的細胞内への導入による難病治療
知的クラスター創成事業 科学技術振興機構 平成21年度~平成25年度 125,000千円 非臨床
2 免疫難病治療のための次世代型抗体医薬開発 科学技術総合推進費 科学技術振興機構 平成20年度~平成24年度 150,000千円 非臨床
3 次世代型IL-6受容体抗体使用時の
炎症マーカーとしてのLRG定量キットの開発と臨床応用
創薬基盤推進研究事業 厚生労働省 平成24年度~平成26年度 116,820千円 非臨床
4 新規癌抗原Glypican-1に対する
抗体医薬品の奏功性を予測するコンパニオン診断薬の開発
創薬基盤推進研究事業 厚生労働省/日本医療研究開発機構 平成26年度~平成28年度 181,500千円 非臨床
5 悪性胸膜中皮腫に対する
新規治療法の開発及び実用化に関する研究
革新的がん医療実用化研究事業 厚生労働省/日本医療研究開発機構 平成26年度~平成28年度 349,794千円 非臨床
6 新規治療標的分子LRGの
炎症性腸疾患における役割の解明と創薬への応用
難治性疾患実用化研究事業 厚生労働省/日本医療研究開発機構 平成26年度~平成28年度 102,310千円 非臨床
7 LSRを標的とした新規作用機序(脂質代謝制御)を有する
画期的抗癌抗体療法による卵巣癌治療法の開発
産学連携医療イノベーション創出プログラム ACT-MS
イノベーションセットアップ事業
日本医療研究開発機構 平成28年度~平成29年度 44,000千円 非臨床
8 脂質代謝を標的とした新規癌治療法の開発 医療分野研究成果展開事業/
産学連携医療イノベーション創出プログラム 基本スキーム ACT-M
日本医療研究開発機構 平成30年度~令和2年度 148,200千円 非臨床
9 悪性胸膜中皮腫に対するAdSOCS3を用いた
新規遺伝子治療の医師主導治験に関する研究
革新的がん医療実用化研究事業 日本医療研究開発機構 平成30年度~令和4年度 291,190千円 治験
10 膵臓癌を標的とした抗体薬物複合体による
革新的治療法の創出を目指した研究
臨床研究・治験基盤事業革新的医療技術創出拠点プロジェクト関連シーズ
橋渡し研究戦略的推進プログラム シーズB
日本医療研究開発機構 平成30年度 65,000千円 非臨床
11 癌と間質を標的とした抗体薬物複合体による
膵臓癌の革新的治療法の創出を目指した研究
革新的がん医療実用化研究事業 日本医療研究開発機構 令和3年度~令和5年度 276,440千円 非臨床
12 癌と間質を標的とした抗体薬物複合体による
膵臓癌の革新的治療法の創出を目指した研究
革新的がん医療実用化研究事業 日本医療研究開発機構 令和6年度~令和8年度 195,000千円 非臨床
総額約
2,045,000千円

競争的資金の獲得実績(科学研究費)(研究代表者)

No 課題名 事業名 管轄機関 実施期間 研究分担者配分額
1 SSI-1ノックアウトマウスを用いたサイトカインシグナル伝達における
negative feedback機構の解明
基盤研究(C) 日本学術振興会 平成11年度~平成12年度 3,800千円
2 感染と宿主応答におけるJAK/STAT制御蛋白の役割の解明 特定領域研究(C) 日本学術振興会 平成13年度 20,000千円
3 プロテオミクス手法による
抗体医薬品奏功性を予測する血清バイオマーカーの探索
挑戦的萌芽研究 日本学術振興会 平成21年度 3,100千円
4 自己免疫疾患の病態における
新規炎症マーカータンパク質(LRG)の機能解析
基盤研究(C) 日本学術振興会 平成22年度~平成24年度 4,420千円
5 プロテオミクス手法による
悪性黒色腫の新規癌抗原の同定と遠隔転移の抗体治療法の開発
挑戦的萌芽研究 日本学術振興会 平成25年度~平成27年度 3,640千円
6 卵巣癌幹細胞におけるLSRの機能解析と
癌再発を克服する画期的治療法の開発
挑戦的萌芽研究 日本学術振興会 平成28年度~平成29年度 3,770千円
7 新規炎症分子LRGによるTGFβシグナル調整機構の解明と
リウマチ疾患の治療法開発
基盤研究(B) 日本学術振興会 平成29年度~平成31年度 16,770千円
8 抗体薬物複合体による
免疫チェックポイント阻害剤の感受性増強機序の解明
基盤研究(C) 日本学術振興会 令和6年度~令和8年度 4,550千円
総額約
60,050千円

競争的資金の獲得実績(財団など)

No 課題名 事業名 管轄機関 実施期間 配分額
1 サイトカインシグナル伝達における
negative feedback機構の解析
研究助成金 大阪臨床免疫学研究奨例会 平成9年度 2,000千円
2 サイトカインシグナル伝達における
negative feedback機構の解析
研究助成金 公益財団法人
武田科学振興財団
平成12年度 2,000千円
3 JAK制御分子の解析による
アレルギー性喘息の病因の解明と治療への応用
奨励助成金 アストラゼネカ
喘息研究奨励助成金
平成13年度 2,000千円
4 サイトカインシグナル制御分子(SOCS family)の
TLRシグナル伝達阻害における分子機構の解明
研究助成金 公益財団法人
山田科学振興財団
平成14年度 2,000千円
5 サイトカインシグナルの制御機構の解明 研究助成金 公益財団法人
持田記念医学薬学振興財団
平成14年度 2,000千円
6 癌および自己免疫疾患における
サイトカインシグナル伝達制御因子(SOCS family分子)の解析
研究助成金 大阪臨床免疫学研究奨例会 平成14年度 2,000千円
7 JAK制御分子の解析による
アレルギー性喘息の病因の解明と治療への応用
アレルギー学術奨励研究助成金 北陸製薬 平成14年度 2,000千円
8 白血病の病因におけるサイトカインシグナル制御蛋白(SOCS family分子)の
解析および白血病の治療における遺伝子治療を含めた臨床応用
研究助成金 公益信託日本白血病研究基金 平成14年度 2,000千円
9 癌および自己免疫疾患における
サイトカインシグナル伝達制御因子(SOCS family分子)の解析
内藤記念科学奨励金・研究助成 公益財団法人
内藤記念科学振興財団
平成14年度 1,000千円
10 癌および自己免疫疾患における
サイトカインシグナル伝達制御因子(SOCS family分子)の解析
がん研究助成 公益財団法人
SGH財団
平成14年度 2,000千円
11 サイトカインシグナル制御因子(SOCS)による
動脈硬化抑制機序の解明
研究助成金 公益財団法人
武田科学振興財団
平成17年度 2,000千円
12 サイトカインシグナル制御因子(SOCS)を用いた
多発性硬化症に対する新規治療法の開発
研究助成金 大阪臨床免疫学研究奨例会 平成19年度 2,000千円
13 サイトカインシグナル制御分子を用いた
免疫難病の新規治療法の開発
研究助成金 公益財団法人
三共生命科学研究振興財団
平成19年度~平成20年度 2,000千円
14 新規ヘルパーT細胞サブセットによる
自己免疫疾患の制御に関する研究
研究助成金 大阪臨床免疫学研究奨例会 平成19年度 2,000千円
15 新規炎症性マーカーLRGを用いた免疫難病、
癌に対する新たな抗体医薬品の開発
内藤記念科学奨励金・研究助成 公益財団法人
内藤記念科学振興財団
平成22年度 3,000千円
16 サイトカインシグナル伝達抑制分子SOCS3を用いた
悪性胸膜中皮腫に対する新規遺伝子治療法の開発
研究助成金 公益財団法人
高松宮妃癌研究基金
平成27年度~平成28年度 2,000千円
総額30,000千円

競争的資金の獲得実績(研究分担者)

No 課題名 事業名 管轄機関 実施期間 研究費総額 研究分担者配分額
1 がん細胞の標的治療のための
先端基盤技術の開発に関する研究(田矢 洋一)
科学技術振興機構
科学技術振興調整費
科学技術振興機構 平成11年度~平成13年度 531,000千円 30,000千円
2 感染の成立と宿主応答の分子基盤(永井 美之) 特定領域C-2 文部科学省 平成13年度~平成15年度 535,000千円 24,000千円
3 気管支喘息発症機序解明へのアプローチ
-抑制性転写因子SOCS-1およびIL-12抑制蛋白の役割-(横山 彰仁)
基盤研究(C) 日本学術振興会 平成13年度~平成15年度 3,700千円 不明
4 肺癌のSOCS-1遺伝子による新規遺伝子治療の研究(濱田 泰伸) 基盤研究(C) 日本学術振興会 平成14年度~平成16年度 2,900千円 不明
5 肺癌細胞の悪性化における
不活性化SOCS遺伝子の意義の解明と治療への応用(大崎 匡)
基盤研究(C) 日本学術振興会 平成15年度~平成16年度 3,500千円 不明
6 アレルギー疾患の遺伝子多型による発症予知と
フラボノイドによる発症予防(田中 敏郎)
基盤研究(C) 日本学術振興会 平成17年度~平成18年度 3,300千円 不明
7 間葉系腫瘍に於ける細胞内シグナル伝達系活性化と
腫瘍増殖機構の解明(西田 俊朗)
萌芽研究 日本学術振興会 平成18年度~平成19年度 3,100千円 不明
8 消化器がんの腫瘍発生に於ける糖鎖修飾の関与(西田 俊朗) 基盤研究(B) 日本学術振興会 平成19年度~平成21年度 18,070千円 10,500千円
9 疾患関連創薬バイオマーカー探索研究(山西 弘一) 創薬基盤推進研究事業 厚生労働省 平成23年度~平成27年度 300,000千円 50,000千円
10 プロテオミクスを活用した次世代コンパニオン診断薬の
創出に向けた基盤技術研究(米田 悦啓)
創薬基盤推進研究事業 厚生労働省 平成24年度~平成28年度 358,000千円 50,000千円
11 ミュラー管由来漿液性腺癌の分子生物学的特徴の解明と
新たな治療標的の同定(榎本 隆之)
基盤研究(B) 日本学術振興会 平成25年度~平成27年度 18,070千円 6,000千円
12 新規BAFF受容体シグナル阻害剤を用いた
シェーグレン症候群の革新的治療薬の開発(竹内 勤)
難治性疾患実用化研究事業 日本医療研究開発機構 平成26年度~平成28年度 99,757千円 5,000千円
13 新しい初代3次元培養法を用いた子宮体癌の
再発・播種に関与するバイオマーカーの探索(吉野 潔)
基盤研究(C) 日本学術振興会 平成26年度~平成28年度 4,810千円 不明
14 分泌蛋白質キナーゼの制御機構の解明と
関節リウマチ治療への応用(竹内 勤)
基盤研究(B) 日本学術振興会 平成26年度~平成28年度 16,380千円 1,400千円
15 炎症関連分子LRGを介した
マクロファージによる心病態制御機構(中山 博之)
挑戦的萌芽研究 日本学術振興会 平成27年度~平成28年度 3,770千円 400千円
16 頭頸部扁平上皮癌における
SOCS1新規遺伝子治療確立のための基礎研究(小森 正博)
基盤研究(C) 日本学術振興会 令和2年度~令和5年度 4,290千円 300千円
17 プロテオーム解析による、重症気管支肺異形成を予測する
新規バイオマーカーの同定(外舘 玄一朗)
基盤研究(C) 日本学術振興会 令和5年度~令和7年度 4,550千円 150千円
総額約127,750千円

臨床と基礎をつなぐ「双方向性研究」

双方向性の研究とは、単に基礎研究成果を臨床にフィードバックするのではありません。臨床から基礎へ、基礎から臨床へと双方向性のベクトルをもつ研究です。例えば、正確な診断および適切な治療を受けた患者さんのサンプルを使用し、基礎的な手法を用いてスクリーニングを行い疾患関連分子を同定します。同定された標的分子を対象として基礎解析を行いその機能を明らかにします。そして他大学や企業などとの学学連携、産学連携のもとで診断薬の開発や創薬を行ない、成果を臨床へとフィードバックする研究です。

臨床と基礎をつなぐ「双方向性研究」

現在行っている研究

01.サイトカインシグナル阻害分子SOCSの発見と癌治療への応用
サイトカインシグナル阻害分子SOCSの発見と癌治療への応用

 仲哲治教授は、サイトカインシグナル伝達の主要な経路であるJAK-STATシグナル伝達経路を抑制する分子としてSOCS-1(Suppressor Of Cytokine Signaling)を世界で初めてクローニングしました(Naka, et al., Nature. 1997)。その後、SOCS-1 KOマウスの作製により、SOCS-1がin vivoにおいてもJAK-STATシグナル伝達経路を抑制する分子であり、SOCS-1の欠損によりJAK-STATシグナル伝達が恒常的に活性化されて、多臓器にわたり炎症が惹起され、3週間以内にマウスが死亡することを明らかにしました(Naka, et al., Immunity. 2001)。また、ヒトのがんにおけるSOCS-1の発現異常(Komazaki, Naka et al., Jpn J Clin Oncol. 2004)や遺伝子異常、さらにSOCS-1 HE KOマウスは自己免疫疾患を発症することなども明らかにし(Fujimoto, Naka, et al., Int Immunol. 2004) 、SOCS-1と炎症・がんとの関連を明らかにしました。
 JAK-STATシグナル伝達経路(主にSTAT3)の恒常的活性化が癌細胞の生存や増殖に深く関わりますので、STAT3の活性化を制御するSOCS-1/SOCS-3に注目し、アデノウイルスベクターを用いたSOCS遺伝子治療法の開発に着手しました。これまでに、非増殖型アデノウィルスベクターにSOCS-3遺伝子を組み込み、悪性胸膜中皮腫の担癌モデルマウスに投与し、高い抗腫瘍活性を持つことを確認済みです(Iwahori, Searda, Naka, et al., Int J Cancer. 2011)。今後、難治性癌の1つである胸膜胸膜中皮腫を対象に医師主導型治験をがんセンター東病院で行うべく研究を進めています。将来的には、肺癌(Shimada, Serada, Naka, et al., Cancer Sci. 2013)、胃癌(Souma, Serada, Naka, et al., Int J Cancer. 2012, Natatsuka, Serada, Naka, et al., Br J Cancer. 2015)、食道癌(Sugase, Serada, Naka, et al., Int J Cancer. 2017, Sugase, Serada, Naka, et al., Cancer Res. 2017)、肝臓癌、皮膚癌(Tagami-Nagata, Serada, Naka, et al., Exp Dermatol. 2015) 、口腔扁平上皮癌(Nakatani, Serada, Naka, et al., Journal of Oral Pathology and Medicine. 2022) 、頭頚部腫瘍(Kajiyama, Serada, Naka, et al., Anticancer Res. 2022) などの難治性癌も視野に入れた開発を行う予定です。

02.Glypican-1を標的とした難治性固形癌に対する革新的抗体医薬品開発
Glypican-1を標的とした難治性固形癌に対する革新的抗体医薬品開発2 Glypican-1を標的とした難治性固形癌に対する革新的抗体医薬品開発2-2

 私達は難治性癌に対する創薬標的分子の探索を目的として、定量的プロテオミクス手法を用いて、食道癌に高発現する細胞膜タンパク質の発現解析を行いました。その結果、食道癌に有意に高く発現する細胞膜蛋白質としてGlypican-1(GPC1)を同定し、GPC1の高発現が食道癌や膵臓癌の予後不良因子となることを示しました(Hara, Serada, Naka, et al., Br J Cancer. 2016, Nishigaki, Serada, Naka, et al., Br J Cancer. 2020)。GPC1は、FGF-2、HGF、HB-EGFなどのヘパリン結合性増殖因子の共役受容体として機能し、癌の増殖や転移を促進することが報告されています。そこで、私達はGPC1が難治性癌に対する治療標的になり得るのではないかと考え、抗体医薬の開発を着手しました。
 近年、モノクローナル抗体を利用して抗癌剤を癌細胞に特異的に送達する技術として抗体薬物複合体(Antibody-drug conjugate: ADC)が注目されています。ADCはモノクローナル抗体にリンカーを介して抗癌剤を結合させたものです。正常組織に発現しておらず癌組織に発現を示す抗原に対するモノクローナル抗体をADC化し、癌患者に投与すると、癌抗原を発現する癌組織特異的に抗癌剤を輸送することが出来ます。そのため、ADCを用いることで、癌に対する抗癌剤の薬効を保持しつつ、正常組織に対する抗癌剤の毒性を軽減させることが可能となります。私達はADCの標的分子としてGPC1が有用性を示すのではないかと考え、抗GPC1モノクローナル抗体を作成しました。数多くのクローンをスクリーニングした結果、細胞内侵入活性が高く、ADCとしての使用に適したマウス抗GPC1モノクローナル抗体を創出することに成功しました (Matsuzaki, Naka, et al., Int J Cancer. 2017, Nishigaki, Serada, Naka, et al., Br J Cancer. 2020, Yokota, Serada, Naka, et al., Mol Cancer Ther. 2021)。
 膵臓癌は間質が多く、間質のバリアによって癌細胞への抗癌剤の送達が妨害されることが膵臓癌における化学療法に抵抗性を示す原因の1つとして考えられています。そのため、膵臓癌のように間質が豊富な難治性癌においては、間質のバリアを克服するような治療戦略が必要です。興味深いことに、私達はGPC1が膵臓癌組織において癌細胞だけでなく、癌関連線維芽細胞(cancer associated fibroblast:CAF)にも高発現し、非癌部位の線維芽細胞では発現しないことを見出しました(Tsujii, Serada, Naka, et al., Mol Cancer Ther. 2021)。そこで、私達は細胞膜透過性を有し、バイスタンダー効果を有するペイロードであるMonomethyl auristatin E (MMAE)を抗GPC1抗体にコンジュゲートしたGPC1-ADCを作成しました。そして、膵臓癌患者由来腫瘍組織を超免疫不全マウスに移植して作成した膵臓癌PDX(patient-derived tumor xenograft)マウスを用いて、GPC1-ADCの作用機序を解析しました。GPC1-ADCはGPC1陽性のCAFに取り込まれますと、CAF内部でリンカーが切断され、MMAEが生じます。このMMAEが薬物排出トランスポーターであるMDR1を介してCAFの外に排出され、CAF周囲の膵臓癌細胞に対して抗腫瘍効果を発揮するという、非常にユニークな作用機序をGPC1-ADCが有することを証明しました(Tsujii, Serada, Naka, et al., Mol Cancer Ther. 2021)。GPC1-ADCはGPC1陽性癌細胞に対する直接的な抗腫瘍効果のみならず、間質が豊富な癌においてはGPC1陽性のCAFにGPC1-ADCが取り込まれ、CAFから遊離した抗癌剤がCAF周囲の癌細胞を殺傷するという間接的な抗腫瘍効果も有します。このため、GPC1を標的としたADCは間質が豊富な難治性癌である膵臓癌などに対して画期的な治療薬になり得る可能性が示唆されました。これまでに抗GPC1モノクローナル抗体のヒト化、ADC化を完了し、ヒト化GPC1-ADCが膵臓癌、食道癌、神経膠腫などの担癌マウスに対して高い抗腫瘍効果を示すことも報告しました(Munekage, Serada, Naka, et al., Neoplasia, 2021, Uchida, Serada, Naka, et al., Neoplasia. 2024)。現在、GPC1-ADCによるGPC1陽性癌に対する臓器横断的な癌治療法の開発が進行中です。

03.LSRを標的とした難治性固形癌に対する革新的抗体医薬品開発
LSRを標的とした難治性固形癌に対する革新的抗体医薬品開発

 私達は定量的プロテオミクス手法を用いて卵巣癌細胞における細胞膜タンパク質の網羅的発現解析を行い、卵巣癌の創薬標的分子を探索しました。その結果、卵巣癌細胞に高発現を示す分子としてlipolysis-stimulated lipoprotein receptor (LSR) を同定し、LSRの高発現が卵巣癌、胃癌、子宮体癌の予後不良因子であることを発見しました(Hiramatsu, et al., Cancer Res. 2018, Sugase, et al., Oncotarget. 2018, Nagase, et al., BMC Cancer. 2022)。LSRは卵巣癌のリンパ節や大網などの転移先の癌細胞にも発現していますので、癌の転移や腹膜播種などにも関与している可能性があります。
 正常細胞において、LSRは脂質の細胞内取り込みや細胞接着分子として機能することが報告されていますが、癌細胞におけるLSRの機能はまだ完全には明らかにされていません。そこで、私達はLSRの機能を阻害する抗LSRモノクローナル抗体を独自に開発しました。ヒト卵巣癌細胞株および卵巣癌患者由来腫瘍組織を移植した担癌マウスに対して抗LSR抗体の抗腫瘍効果の検討を行いました。その結果、抗LSR抗体が発揮する抗腫瘍効果の作用機序の1つとして、癌細胞内への脂質取り込み阻害活性が存在することを証明しました。この他にも、私達はLSRが新規免疫チェックポイント分子として機能することや(Funauchi, et al., Int J Cancer. 2024)、LSRがADCの標的分子として有用性を示すことも明らかにしました(Kanda, et al., Neoplasia. 2023)。
 私達はLSR陽性癌の増殖・生存・腹膜播種などにおけるLSRの機能解析と並行して、抗LSR抗体による抗腫瘍効果の作用機序を明らかにし、LSR陽性難治性癌に対する新規抗体医薬の実用化を目指した研究を行っています。

04.リウマチ・膠原病疾患の多施設産学連携オミクス研究
―免疫炎症性難病創薬コンソーシアム―

 私達のグループでは、複数アカデミア(岩手医科大学、慶應義塾大学、高知大学、医薬基盤・健康・栄養研究所)と複数企業(田辺三菱製薬、小野薬品工業、第一三共製薬)と協力して連携体制を組み、免疫炎症性難病を対象に創薬を目標とするマルチオミクス研究を2018年より実施してきました。この研究体制は、仲哲治教授が慶應義塾大学リウマチ内科の竹内勉教授(当時)と協力して独自に構築したものです。各大学の附属病院では約5年の歳月をかけて、正確な診断と適切な治療を受けている免疫炎症性難病患者さんの貴重な検体を治療前後で収集し、フローサイトメトリーによる免疫細胞のフェノタイピング、免疫細胞のトランスクリプトーム解析、血清のプロテオミクス解析によって詳細かつ網羅的なデータ取得を行いました。得られたデータは医薬基盤・健康・栄養研究所において臨床情報とともにデータベース化されています。現在、製薬各社およびアカデミアは、このデータベースを分析してシーズ探索を行い、独自の基礎・応用研究に取り組みながら免疫炎症性難病の病態解明や創薬を目指しています。このような多施設共同の枠組みは、従来型のアカデミアと企業との一対一の共同研究の弱点克服を目指して、難病患者さんの貴重な検体とそのオミクスデータを参加施設内の共有財産とするものです。希少難病研究の効率化と活性化をはかったユニークかつ新たな試みであり、難病創薬につながる成果が期待されます。

05.難治性疾患における疾患関連蛋白の探索的研究
―新たな炎症マーカーLRGの開発と適応拡大への試み―

 仲哲治教授は、大阪大学のリウマチ患者血清に含まれるタンパク質を網羅的に分析し、新規の炎症性マーカーであるLeucine-rich alpha-2-glycoprotein (LRG)を世良田准教授とともに同定しました(Serada, Naka, et al., Ann Rheum Dis. 2010)。LRGは肝細胞で産生される血清タンパク質として知られていましたが、私達の一連の解析から、IL-6、TNF-α、IL-22といった炎症性サイトカインによってLRGの発現が誘導され (Serada, Naka, et al., Inflamm Bowel Dis. 2012)、しかも炎症部位では様々な細胞(上皮細胞やマクロファージ、好中球など)からLRGが産生されていることが明らかになりました。現在、炎症マーカーとして使われているC反応性蛋白質(CRP)は、IL-6依存的に肝細胞で産生され、その他の炎症性サイトカインの刺激や他の細胞ではほぼ発現が誘導されません。したがって、LRGはより広範な疾患病態で炎症マーカーとして利用できる可能性があります。事実、IL-6阻害治療中の関節リウマチ患者においては、CRP発現自体が抑制されるためCRPを疾患活動性マーカーとして使うことが出来ません。しかし、LRGは様々な炎症性サイトカインにより炎症局所で産生されるために、IL-6阻害中でも疾患活動性に応じた上昇が認められます (Fujimoto, Naka, et al., Arthritis Rheumatol. 2015)。また、病勢がCRPに反映されないことがある潰瘍性大腸炎では、血清LRGがCRPよりも疾患活動性と良く相関することが明らかになりました(Shinzaki, Naka, et al., J Crohns Colitis. 2017)。仲哲治教授は、これらの成果をもとにして、臨床検査用のLRG測定系を企業と共同開発し、2020年には潰瘍性大腸炎やクローン病に対する疾患活動性評価マーカーとしてLRGの保険収載に結びつけました。令和5年度の「潰瘍性大腸炎・クローン業診断基準・治療指針」では、便中カルプロテクチンとともにその有用性が記載されることになりました。これまで、私達のグループでは、乾癬、皮膚筋炎の肺病変、新生児感染症などにおいて、血清LRGが疾患活動性マーカーとして有用性を発揮することを報告してきました(Nakajima, Naka, et al., J Dermatol Sci. 2017, Fujimoto, Naka, et al., Sci Rep. 2020, Ishida, Naka, et al., PLoS One. 2020, Kajimoto, Naka, et al., PLoS One. 2020)。しかし、当科で診療している関節リウマチや膠原病の多くで、LRGの上昇が認められることが明らかになってきています。炎症性腸疾患診療に実用化されたLRG測定系を、リウマチ・膠原病分野にも展開すべく、当科の疾患を対象とする臨床研究が現在進行中です(Fujimoto, Naka, et al., Mod Rheumatol. 2023 Online)。
 私達はまた、LRGの機能面についても検討も行なっています。LRGノックアウトマウスを独自に作製して、マウスにさまざまな疾患を誘発させたところ、関節炎が軽減 (Urushima, Naka, et al., Arthritis Res Ther. 2017)、肺線維症が軽減(Honda, Naka, et al., Physiol Rep. 2017)、乾癬様皮膚炎が軽減(Nakajima, Naka, et al. J Immunol. 2021)されることが明らかになりました。このことはLRGが炎症の増悪に何らかの形で関わっていることを示唆しています。現在、様々な疾患マウスモデルを用いてLRGの機能面での解析を行い、創薬標的としてのLRGの評価を行っています。

難治性疾患における疾患関連蛋白の探索的研究
06.中枢神経症状を呈する自己免疫疾患の微小脳血管における血管炎の検出

 中枢神経系の症状を呈する自己免疫疾患の診断において、画像、特にMRI画像は血清、髄液とともに病態の総合的判断材料として広く用いられています。しかし、臨床的に中枢神経症状が明らかであっても、通常診療で使われるMRI(1.5テスラ(T), 3T)では異常が検出されないケースがあり、これは小型血管よりもさらに細い血管(微小脳血管)に炎症の主座が存在する可能性があります(Murata, et al., Neuroreport, 2015)。本研究では、村田講師らの研究グループにおいて、髄液、血清のサイトカインプロファイルおよび急性期タンパクなどの炎症マーカーを新たに評価するとともに、高磁場MRI(7T)を用いて従来のMRIでは検出できない微小脳血管炎を描出し、炎症マーカーの動きと得られた画像所見との関連を調べます。現状では診断が困難な自己免疫疾患の中枢神経病変について、新たなマーカーや評価指標を開発することを目指します。

2024

1) Funauchi M, Serada S, Hiramatsu K, Funajima E, Kanda M, Nagase Y, Nakagawa S, Ohkawara T, Fujimoto M, Suzuki Y, Ueda Y, Kimura T, Naka T.
Tumor cell-expressed lipolysis-stimulated lipoprotein receptor negatively regulates T cell function.
Int J Cancer . 2024 Feb 1;154(3):425-433.[PubMed]
2) Suzuki Y, Tasaki M, Kakisaka K, Nishiya M, Nomura T, Nakao M, Sugawara E, Takikawa Y, Ueda M.
Possible transmission of leukocyte chemotactic factor 2 amyloidosis after interpopulational liver transplantation.
Amyloid. 2024 Mar 5:1-3.[PubMed]
3) Uchida S, Serada S, Suzuki Y, Funajima E, Kitakami K, Dobashi K, Tamatani S, Sato Y, Beppu T, Ogasawara K, Naka T.
Glypican-1-targeted antibody–drug conjugate inhibits the growth of glypican-1-positive glioblastoma.
Neoplasia. 2024 Apr;50:100982.[PubMed]

2023

1) Kanda M, Serada S, Hiramatsu K, Funauchi M, Obata K, Nakagawa S, Ohkawara T, Murata O, Fujimoto M, Chiwaki F, Sasaki H, Ueda Y, Kimura T, Naka T.
Lipolysis-stimulated lipoprotein receptor-targeted antibody-drug conjugate demonstrates potent antitumor activity against epithelial ovarian cancer.
Neoplasia. 2023 Jan;35:100853. [PubMed]
2) Murata O, Suzuki K, Takeuchi T.
Thymus variants on imaging of patients with primary Sjögren's syndrome and polymyositis/dermatomyositis: clinical and immunological significance.
Immunol Med. 2023 Mar;46(1):25-31. [PubMed]
3) Teranishi R, Takahashi T, Obata Y, Nishida T, Okubo S, Kazuno H, Saito Y, Serada S, Fujimoto M, Kurokawa Y, Saito T, Yamamoto K, Yamashita K, Tanaka K, Makino T, Nakajima K, Hirota S, Naka T, Eguchi H, Doki Y.
Combination of pimitespib (TAS-116) with sunitinib is an effective therapy for imatinib-resistant gastrointestinal stromal tumors.
Int J Cancer . 2023 Jun 15;152(12):2580-2593. [PubMed]
4) Saito Y, Takahashi T, Hiramatsu K, Serada S, Fujimoto M, Ohkawara T, Sugase T, Nishigaki T, Tanaka T, Miyazaki Y, Makino T, Kurokawa Y, Nakajima K, Yamasaki M, Ishii K, Eguchi H, Doki Y, Naka T.
Nano-particulate Toll-like receptor9 agonist potentiates the antitumor activity of anti-Glypican1 antibody.
Anticancer Res. 2023 Jun;43(6):2425-2432. [PubMed]
5) Watanabe T, Suzuki Y, Kuroda H, Hiraki H, Suzuki A, Tamura A, Ieko Y, Nishizuka SS, Matsumoto T.
Circulating Cell-Free DNA as a Biomarker for Prognosis and Response to Systemic Therapy in Patients with Unresectable Hepatocellular Carcinoma.
Oncology. 2023;101(11):714-722 [PubMed]
6) Umezawa N, Mizoguchi F, Maejima Y, Kimura N, Hasegawa H, Hosoya T, Fujimoto M, Kohsaka H, Naka T, Yasuda S.
Leucine-rich alpha-2 glycoprotein as a potential biomarker for large vessel vasculitides.
Front Med (Lausanne). 2023 May 5;10:1153883. [PubMed]
7) Kimura A, Takagi T, Thamamongood T, Sakamoto S, Ito T, Seki I, Okamoto M, Aono H, Serada S, Naka T, Imataka H, Miyake K, Ueda T, Miyanokoshi M, Wakasugi K, Iwamoto N, Ohmagari N, Iguchi T, Nitta T, Takayanagi H, Yamashita H, Kaneko H, Tsuchiya H, Fujio K, Handa H, Suzuki H.
Extracellular aaRSs drive autoimmune and inflammatory responses in rheumatoid arthritis via the release of cytokines and PAD4.
Ann Rheum Dis. 2023 Sep;82(9):1153-1161. [PubMed]
8) Watabe T, Kabayama K, Naka S, Yamamoto R, Kaneda K, Serada S, Ooe K, Toyoshima A, Wang Y, Haba H, Kurimoto K, Kobayashi T, Shimosegawa E, Tomiyama N, Fukase K, Naka T.
Immuno-PET and targeted alpha therapy using anti-glypican-1 antibody labeled with 89Zr/211At: a novel theranostics approach for pancreatic ductal adenocarcinoma.
J Nucl Med. 2023 Dec 1;64(12):1949-1955.[PubMed]
9) Fujimoto M, Hosono Y, Serada S, Suzuki Y, Ohkawara T, Murata O, Quick A, Suzuki K, Kaneko Y, Takeuchi T, Naka T.
Minoru Fujimoto and Yuji Hosono contributed equally to this work.
Leucine-rich α2-glycoprotein as a useful biomarker for evaluating disease activity in rheumatoid arthritis.
Modern Rheumatology. 2023 Dec 23:road112.[PubMed]

2022

1) Nakatani K, Serada S, Fujimoto M, Obata K, Ohkawara T, Sasabe E, Yamamoto T, Naka T.
Gene therapy with SOCS1 induces potent preclinical antitumor activities in oral squamous cell carcinoma.
Journal of Oral Pathology and Medicine. 2022 Feb;51(2):126-133. [PubMed]
2) Kajiyama T, Serada S, Fujimoto M, Ohkawara T, Komori M, Hyodo M, Naka T.
SOCS1 gene therapy for head and neck cancers: an experimental study.
Anticancer Res. 2022 Jul;42(7):3361-3372. [PubMed]
3) Nagase Y, Hiramatsu K, Funauchi M, Shiomi M, MasudaT, Kakuda M, Nakagawa S, Miyoshi A, Matsuzaki S, Kobayashi E, Kimura T, Serada S, Ueda Y, Naka T, Kimura T.
Anti-lipolysis-stimulated lipoprotein receptor monoclonal antibody as a novel therapeutic agent for endometrial cancer
BMC Cancer. 2022 Jun 21;22(1):679. [PubMed]
4) Takata S, Takeda Y, Hirata H, Shirai Y, Morita T, Futami Y, Naito Y, Masuhiro K, Shiroyama T, Miyake K, Naka T, Kumanogoh A.
Leucine-rich a-2 glycoprotein as a potential biomarker of idiopathic multicentric Castleman disease with pulmonary involvement: a single-center case-control study from Japan.
J Thorac Dis. 2022 May;14(5):1332-1341. [PubMed]
5) Tsukuda TK, Ohnishi H, Fujimoto M, Nakatani Y, Takamatsu K, Naka T, Yokoyama A.
Lung CCR6-CXCR3- type 2 helper T cells as an indicator of progressive fibrosing interstitial lung diseases.
Sci Rep. 2022 Nov 15;12(1):19577. [PubMed]

2021

1) Takahashi Y, Serada S, Ohkawara T, Fujimoto M, Hiramatsu K, Ueda Y, Kimura T, Takemori H, Naka T.
LSR promotes epithelial ovarian cancer cell survival under energy stress through the LKB1-AMPK pathway.
Biochem Biophys Res Commun. 2021 Jan 22;537:93-99. [PubMed]
2) Nakae R, Matsuzaki S, Serada S, Matsuo K, Shiomi M, Sato K, Nagase Y, Matsuzaki S, Nakagawa S, Hiramatsu K, Okazawa A, Kimura T, Egawa-Takata T, Kobayashi E, Ueda Y, Yoshino K, Naka T, Kimura T.
CD70 antibody-drug conjugate as a potential therapeutic agent for uterine leiomyosarcoma
Am J Obstet Gynecol. 2021 Feb;224(2):197.e1-197.e23. [PubMed]
3) Nakajima H, Nakajima K, Serada S, Fujimoto M, Naka T, Sano S.
The involvement of leucine-rich α-2 glycoprotein in the progression of skin and lung fibrosis in bleomycin-induced systemic sclerosis model.
Mod Rheumatol. 2021 Feb 17:1-10. [PubMed]
4) Nakajima H, Nakajima K, Takaishi M, Ohko K, Serada S, Fujimoto M, Naka T, Sano S.
The skin-liver axis modulates the psoriasiform phenotype and involves leucine-rich α-2 glycoprotein
J Immunol. 2021 Apr 1;206(7):1469-1477. [PubMed]
5) Koh M, Kurokawa Y, Kobayashi T, Saito T, Ishida T, Serada S, Fujimoto M, Naka T, Wada N, Yamashita K, Tanaka K, Miyazaki Y, Makino T, Nakajima K, Yamasaki M, Eguchi H, Doki Y.
Propranolol suppresses gastric cancer cell growth by regulating proliferation and apoptosis.
Gastric Cancer. 2021 Sep;24(5):1037-1049 [PubMed]
6) Yokota K, Serada S, Tsujii S, Toya K, Takahashi T, Matsunaga T, Fujimoto M, Uemura S, Namikawa T, Murakami I, Kobayashi S, Eguchi H, Doki Y, Hanazaki K, Naka T.
Anti-glypican-1 antibody–drug conjugate as potential therapy against tumor cells and tumor vasculature for glypican-1 positive cholangiocarcinoma.
Mol Cancer Ther. 2021 Sep;20(9):1713-1722 [PubMed]
7) Shibata Y, Nakajima H, Nakajima K, Serada S, Fujimoto M, Naka T, Sano S.
Leucine-rich α-2 glycoprotein is a predictive marker of therapeutic efficacy of the biologics in psoriatic arthritis.
Journal of Cutaneous Immunology and Allergy. 2021;4:86–88
8) Shinzaki S, Matsuoka K, Tanaka H, Takeshima F, Kato S, Torisu T, Ohta Y, Watanabe K, Nakamura S, Yoshimura N, Kobayashi T, Shiotani A, Hirai F, Hiraoka S, Watanabe M, Matsuura M, Nishimoto S, Mizuno S, Iijima H, Takehara T, Naka T, Kanai T, Matsumoto T.
Leucine-rich alpha-2 glycoprotein is a potential biomarker to monitor disease activity in inflammatory bowel disease receiving adalimumab: PLANET study.
J Gastroenterol. 2021 Jun;56(6):560-569. [PubMed]
9) Shiomi M, Matsuzaki S, Serada S, Matsuo K, Mizuta-Odani C, Jitsumori M, Nakae R, Matsuzaki S, Nakagawa S, Hiramatsu K, Miyoshi A, Kobayashi E, Kimura T, Ueda Y, Yoshino K, Naka T, Kimura T.
CD70 antibody-drug conjugate: A potential novel therapeutic agent for ovarian cancer.
Cancer Sci. 2021 Sep;112(9):3655-3668 [PubMed]
10) Munekage E, Serada S, Tsujii S, Yokota K, Kiuchi K, Tominaga K, Fujimoto M, Kanda M, Uemura S, Namikawa T, Nomura T,Murakami T, Hanazaki K, Naka T.
A glypican-1-targeted antibody-drug conjugate exhibits potent tumor growth inhibition in glypican-1-positive pancreatic cancer and esophageal squamous cell carcinoma.
Neoplasia. 2021 Jul 28;23(9):939-950 [PubMed]
11) Yanai S, Shinzaki S, Matsuoka K, Mizuno S, Iijima H, Naka T, Kanai T, Matsumoto T.
Leucine-Rich Alpha-2 Glycoprotein May Be Predictive of the Adalimumab Trough Level and Antidrug Antibody Development for Patients with Inflammatory Bowel Disease: A Sub-Analysis of the PLANET Study.
Digestion. 2021 Jul 16:1-9. [PubMed]
12) Tsujii S, Serada S, Fujimoto M, Uemura S, Namikawa T, Nomura T,Murakami I, Hanazaki K, Naka T.
Glypican-1 is a novel target for stroma and tumor cell dual-targeting antibody-drug conjugates in pancreatic cancer.
Mol Cancer Ther. 2021 Dec;20(12):2495-2505. [PubMed]
13) Ishida T, Takahashi T, Kurokawa Y, Nishida T, Hirota S, Serada S, Fujimoto M, Naka T, Teranishi R, Saito T, Yamashita K, Tanaka K, Yamamoto K, Makino T, Yamasaki M, Nakajima K, Eguchi H, Doki Y.
Targeted therapy for drug-tolerant persister cells after imatinib treatment for gastrointestinal stromal tumours.
Br J Cancer. 2021 Nov;125(11):1511-1522. [PubMed]

2020

1) Kakuda M, Matsuzaki S, Ueda Y, Shiomi M, Matsuzaki s, Kimura T, Fujita M, Egawa-Takata T, Kobayashi E, Serada S, Yoshino K, Naka T, KimuraT.
Copper ions are novel therapeutic agents for uterine leiomyosarcoma
Am J Obstet Gynecol. 2020 Jan;222(1):64.e1-64.e16. [PubMed]
2) Saito Y, Takahashi T, Obata Y, Nishida T, Ohkubo S, Nakagawa F, Serada S, Fujimoto M, Ohkawara T, Nishigaki T, Sugase T, Koh M, Ishida T, Tanaka K, Miyazaki Y, Makino T, Kurokawa Y, Nakajima K, Yamasaki M, Hirota S, Naka T, Mori M, Doki Y.
TAS-116 inhibits oncogenic KIT signaling on the Golgi in both imatinib-naïve and imatinib-resistant gastrointestinal stromal tumors
Br J Cancer. 2020 Mar;122(5):658-667. [PubMed]
3) Nishigaki T, Takahashi T, Serada S, Fujimoto M, Ohkawara T, Hara H, Sugase T, Otsuru T, Saito Y, Tsujii S, Nomura T, Tanaka K, Miyazaki Y, Makino T, Kurokawa Y, Nakajima K, Eguchi H, Yasamaki M, Mori M, Doki Y, Naka T.
Anti-glypican-1 antibody-drug conjugate is a potential therapy against pancreatic cancer.
Br J Cancer. 2020 Apr;122(9):1333-1341. [PubMed]
4) Fujimoto M, Matsumoto T, Serada S, Tsujimura Y, Hashimoto S, Yasutomi Y, Naka T.
Leucine-rich alpha 2 glycoprotein is a new marker for active disease of tuberculosis.
Scientific Reports. 2020 Feb 25;10(1):3384. [PubMed]
5) Kato D, Yaguchi T, Iwata T, Katoh Y, Morii K, Tsubota K, Takise Y, Tamiya M, Kamada H, Akiba H, Tsumoto K, Serada S, Naka T, Nishimura R, Nakagawa T, Kawakami Y.
GPC1 specific CAR-T cells eradicate established solid tumor without adverse effects and synergize with anti-PD-1 Ab.
eLife. 2020 Mar 31;9:e49392. [PubMed]
6) Jin Z, Kobayashi S, Gotoh K, Takahashi T, Eguchi H, Naka T, Mori M, Doki Y.
The Prognostic Impact of Leucine-Rich α-2-Glycoprotein-1 in Cholangiocarcinoma and Its Association With the IL-6/TGF-β1 Axis.
J Surg Res. 2020 Apr 9;252:147-155. [PubMed]
7) Adachi T, Yasuda K, Muto T, Serada S, Yoshimoto T, Ishii KJ, Kuroda E, Araki K, Ohmuraya M, Naka T, Nakanishi K.
Lung fibroblasts produce interleukin-33 in response to stimulation by retinoblastoma-binding protein 9 via production of prostaglandin E2.
International Immunology. 2020 Sep 30;32(10):637-652. [PubMed]
8) Ishida T, Kotani T, Serada S, Fujimoto M, Takeuchi T, Makino M, Naka T.
Correlation of increased serum leucine-rich α2-glycoprotein levels with disease prognosis, progression, and activity of interstitial pneumonia in patients with dermatomyositis: A retrospective study
PLoS One. 2020 Jun 1;15(6):e0234090. [PubMed]
9) Kajimoto E, Endo M, Fujimoto M, Matsuzaki S, Fujii M, Yagi K, Kakigano A, Mimura K, Tomimatsu T, Serada S, Takeuchi M, Yoshino K, Ueda Y, Kimura T, Naka T.
Evaluation of leucine-rich alpha-2-glycoprotein as a biomarker of fetal infection.
PLoS One. 2020 Nov 19;15(11):e0242076. [PubMed]

2019

1) Yoneda T, Kunimura N, Kitagawa K, Fukui Y, Saito H, Narikiyo K, Ishiko M, Otsuki N, Nibu KI, Fujisawa M, Serada S, Naka T, Shirakawa T.
Overexpression of SOCS3 mediated by adenovirus vector in mouse and human castration resistant prostate cancer cells increases the sensitivity to NK cells in vitro and in vivo
Cancer Gene Therapy. 2019 Nov;26(11-12):388-399. [PubMed]
2) Otsuru T, Kobayashi S, Wada H, Takahashi T, Gotoh K, Iwagami Y, Yamada D, Noda T, Asaoka T, Serada S, Fujimoto M, Eguchi H, Mori M, Doki Y, Naka T.
Epithelial-mesenchymal transition via TGF-β in pancreatic cancer is potentiated by the inflammatory glycoprotein LRG.
Cancer Sci. 2019 Mar;110(3):985-996. [PubMed]
3) Shibata Y, Serada S, Fujimoto M, Ohko K, Oishi T, Fujieda M, Naka T, Sano S.
Myosin heavy chain, a novel allergen for fish allergy in patients with atopic dermatitis.
British Journal of Dermatology. 2019 Dec;181(6):1322-1324. [PubMed]

2018

1) Hiramatsu K, Serada S, Enomoto T, Takahashi Y, Nakagawa S, Nojima S, Morimoto A, Matsuzaki S, Yokoyama T, Takahashi T, Fujimoto M, Takemori H, Ueda Y, Yoshino K, Morii E, Kimura T, Naka T.
LSR antibody therapy inhibits ovarian epithelial tumor growth by inhibiting lipid uptake.
Cancer Res. 2018 Jan 15;78(2):516-527. [PubMed]
2) Matsuzaki S, Serada S, Hiramatsu K, Nojima S, Matsuzaki S, Ueda Y, Ohkawara T, Mabuchi S, Fujimoto M, Morii E, Yoshino K, Kimura T, Naka T.
Anti-glypican-1 antibody-drug conjugate exhibits potent preclinical antitumor activity against glypican-1 positive uterine cervical cancer.
Int J Cancer. 2018 Mar 1;142(5):1056-1066. [PubMed]
3) Lee H, Ohkawara T, Honda H, Serada S, Terada Y, Naka T.
Leucine rich α-2 glycoprotein is a potential urinary biomarker for renal tubular injury.
Biochem Biophys Res Commun. 2018 Apr 15;498(4):1045-1051. [PubMed]
4) Sugase T, Takahashi T, Serada S, Fujimoto M, Ohkawara T, Hiramatsu K, Nishida T, Hirota S, Saito Y, Tanaka K, Miyazaki Y, Makino T, Kurokawa Y, Yamasaki M, Nakajima K, Hanasaki K, Kishimoto T, Mori M, Doki Y, Naka T.
SOCS1 gene therapy has antitumor effects in imatinib-resistant gastrointestinal stromal tumor cells through FAK/PI3K signaling.
Gastric Cancer. 2018 Nov;21(6):968-976 [PubMed]
5) Kimura A, Kitajima M, Nishida K, Serada S, Fujimoto M, Naka T, Fujii-Kuriyama Y, Sakamato S, Ito T, Handa H, Tanaka T, Yoshimura A, Suzuki H.
NQO1 inhibits the TLR-dependent production of selective cytokines by promoting IκB-ζ degradation.
J Exp Med. 2018 Aug 6;215(8):2197-2209. [PubMed]
6) Nakagawa S, Serada S, Kakubari R, Hiramatsu K, Sugase T, Matsuzaki S, Matsuzaki S, Ueda Y, Yoshino K, Ohkawara T, Fujimoto M, Kishimoto K, Kimura T, Naka T.
Intratumoral delivery of an adenoviral vector carrying the SOCS-1 gene enhances T cell-mediated anti-tumor immunity by suppressing PD-L1.
Mol Cancer Ther. 2018 Sep;17(9):1941-1950. [PubMed]
7) Sugase T, Takahashi T, Serada S, Fujimoto M, Ohkawara T, Hiramatsu K, Koh M, Saito Y, Tanaka K, Miyazaki Y, Makino T, Kurokawa Y, Yamasaki M, Nakajima K, Hanazaki K, Mori M, Doki Y, Naka T.
Lipolysis-stimulated lipoprotein receptor overexpression is a novel predictor of poor clinical prognosis and a potential therapeutic target in gastric cancer.
Oncotarget. 2018 Aug 31;9(68):32917-32928. [PubMed]
8) Egawa-Takata T, Yoshino K, Hiramatsu K, Nakagawa S, Serada S, Nakajima A, Endo H, Kubota S, Matsuzaki S, Kobayashi E, Ueda Y, Morii E, Inoue M, Naka T, Kimura T.
Small Cell Carcinomas of the Uterine Cervix and Lung: Proteomics Reveals Similar Protein Expression Profiles.
Int J Gynecol Cancer. 2018 Nov;28(9):1751-1757. [PubMed]
9) Naka T, Fujimoto M.
LRG is a novel inflammatory marker clinically useful for the evaluation of disease activity in rheumatoid arthritis and inflammatory bowel disease.
Immunol Med. 2018 Jun;41(2):62-67. [PubMed]

2017

1) Shinzaki S, Matsuoka K, Iijima H, Mizuno S, Serada S, Fujimoto M, Arai N, Koyama N, Morii E, Watanabe M, Hibi T, Kanai T, Takehara T, Naka T.
Leucine-rich Alpha-2 Glycoprotein is a Serum Biomarker of Mucosal Healing in Ulcerative Colitis.
J Crohns Colitis. J Crohns Colitis. 2017 Jan;11(1):84-91.  [PubMed]
2) Hosono Y, Nakashima R, Serada S, Murakami K, Imura Y, Yoshifuji H, Ohmura K, Naka T, Mimori T.
Splicing factor proline/glutamine-rich is a novel autoantigen of dermatomyositis and associated with anti-melanoma differentiation-associated gene 5 antibody.
J Autoimmun. 2017 Feb;77:116-122.  [PubMed]
3) Harada E, Serada S, Fujimoto M, Takahashi Y, Takahashi T, Hara H, Nakatsuka R, Sugase T, Nishigaki T, Saito Y, Hiramatsu K, Nojima S, Mitsuo R, Ohkawara T, Morii E, Mori M, Doki Y, Kaneda Y, Naka T.
Glypican-1 targeted antibody-based therapy induces preclinical antitumor activity against esophageal squamous cell carcinoma.
Oncotarget. 2017 Apr 11;8(15):24741-24752. [PubMed]
4) Takahashi T, Elzawahry A, Mimaki S, Furukawa E, Nakatsuka R, Nakamura H, Nishigaki T, Serada S, Naka T, Hirota S, Shibata T, Tsuchihara K, Nishida T, Kato M.
Genomic and transcriptomic analysis of imatinib resistance in gastrointestinal stromal tumors.
Genes Chromosomes Cancer. 2017 Apr;56(4):303-313. [PubMed]
5) Shinzaki S, Iijima H, Fujii H, Kamada Y, Naka T, Takehara T, Miyoshi E.
A novel pathogenesis of inflammatory bowel disease from the perspective of glyco-immunology.
J Biochem. 2017 May 1;161(5):409-415. [PubMed]
6) Nakajima H, Serada S, Fujimoto M, Naka T, Sano S.
Leucine-rich α-2 glycoprotein is an innovative biomarker for psoriasis. J Dermatol Sci. 2017 May;86(2):170-174.  [PubMed]
7) Sugase T, Takahashi T, Serada S, Nakatsuka R, Fujimoto M, Ohkawara T, Hara H, Nishigaki T, Tanaka K, Miyazaki Y, Makino T, Kurokawa Y, Yamasaki M, Nakajima K, Takiguchi S, Kishimoto T, Mori M, Doki Y, Naka T.
Suppressor of cytokine signaling-1 gene therapy induces potent antitumor effect in patient-derived esophageal squamous cell carcinoma xenograft mice.
Int J Cancer. 2017 Jun 1;140(11):2608-2621.  [PubMed]
8) Urushima H, Fujimoto M, Mishima T, Ohkawara T, Honda H, Lee H, Kawahata H, Serada S, Naka T.
Leucine-rich alpha 2 glycoprotein promotes Th17 differentiation and collagen-induced arthritis in mice through enhancement of TGF-β-Smad2 signaling in naïve helper T cells.
Arthritis Res Ther. 2017 Jun 14;19(1):137.  [PubMed]
9) Yamamoto M, Takahashi T, Serada S, Sugase T, Tanaka K, Miyazaki Y, Makino T, Kurokawa Y, Yamasaki M, Nakajima K, Takiguchi S, Naka T, Mori M, Doki Y.
Overexpression of leucine-rich α2-glycoprotein-1 is a prognostic marker and enhances tumor migration in gastric cancer.
Cancer Sci. 2017 Oct;108(10):2052-2060. [PubMed]
10) Sugase T, Takahashi T, Serada S, Fujimoto M, Hiramatsu K, Ohkawara T, Tanaka K, Miyazaki Y, Makino T, Kurokawa Y, Yamasaki M, Nakajima K, Kishimoto T, Mori M, Doki Y, Naka T.
SOCS1 gene therapy improves radiosensitivity and enhances irradiation-induced DNA damage in esophageal squamous cell carcinoma.
Cancer Res. 2017 Dec 15;77(24):6975-6986. [PubMed]
11) Honda H, Fujimoto M, Serada S, Urushima H, Mishima T, Lee H, Ohkawara T, Kohno N, Hattori N, Yokoyama A, Naka T.
Leucine-rich α-2 glycoprotein promotes lung fibrosis by modulating TGF-β signaling in fibroblasts.
Physiological Reports. 2017 Dec;5(24). pii: e13556. [PubMed]

2016

1) Yang L, Murota H, Shindo S, Yang F, Serada S, Fujimoto M, Naka T, Katayama I.
Increased serum CXCR2 ligand levels in livedo vasculopathy with winter ulcerations: Possible contribution of neutrophil recruitment to lesional skin.
J Dermatol Sci. 82(1):57-9. 2016. [PubMed]
2) Mahmoud NF, Kawabata A, Tang H, Wakata A, Wang B, Serada S, Naka T, Mori Y.
Human herpesvirus 6 U11 protein is critical for virus infection.
Virology. 2016 Feb;489:151-7.  [PubMed]
3) Kumagai S, Nakayama H, Fujimoto M, Honda H, Serada S, Ishibashi-Ueda H, Kasai A, Obana M, Sakata Y, Sawa Y, Fujio Y, Naka T.
Myeloid cell-derived LRG attenuates adverse cardiac remodelling after myocardial infarction.
Cardiovasc Res. 2016 Feb 1;109(2):272-82.  [PubMed]
4) Yamada K, Miyamoto Y, Tsujii A, Moriyama T, Ikuno Y, Shiromizu T, Serada S, Fujimoto M, Tomonaga T, Naka T, Yoneda Y, Oka M.
Cell surface localization of importin α1/KPNA2 affects cancer cell proliferation by regulating FGF1 signalling.
Sci Rep. 2016 Feb 18;6:21410. [PubMed]
5) Hiramatsu K, Yoshino K, Serada S, Yoshihara K, Hori Y, Fujimoto M, Matsuzaki S, Egawa-Takata T, Kobayashi E, Ueda Y, Morii E, Enomoto T, Naka T, Kimura T.
Similar protein expression profiles of ovarian and endometrial high-grade serous carcinomas.
Br J Cancer. 2016 Mar 1;114(5):554-61.  [PubMed]
6) Yotsui I, Serada S, Naka T, Saruhashi M, Taji T, Hayashi T, Quatrano RS, Sakata Y.
Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens.
Biochem Biophys Res Commun. 2016 Mar 18;471(4):589-95. [PubMed]
7) Han Y, Ripley B, Serada S, Naka T, Fujimoto M.
Interleukin-6 Deficiency Does Not Affect Motor Neuron Disease Caused by Superoxide Dismutase 1 Mutation.
PLoS One. 2016 Apr 12;11(4):e0153399.  [PubMed]
8) Hara H, Takahashi T, Serada S, Fujimoto M, Ohkawara T, Nakatsuka R, Harada E, Nishigaki T, Takahashi Y, Nojima S, Miyazaki Y, Makino T, Kurokawa Y, Yamasaki M, Miyata H, Nakajima K, Takiguchi S, Morii E, Mori M, Doki Y, Naka T.
Overexpression of glypican-1 implicates poor prognosis and their chemoresistance in oesophageal squamous cell carcinoma.
Br J Cancer. 2016 Jun 28;115(1):66-75.   [PubMed]
9) Wada N, Kurokawa Y, Takahashi T, Hamakawa T, Hirota S, Naka T, Miyazaki Y, Makino T, Yamasaki M, Nakajima K, Takiguchi S, Mori M, Doki Y.
Detecting Secondary C-KIT Mutations in the Peripheral Blood of Patients with Imatinib-Resistant Gastrointestinal Stromal Tumor.
Oncology. 2016;90(2):112-7.  [PubMed]
10) Honda H, Fujimoto M, Miyamoto S, Ishikawa N, Serada S, Hattori N, Nomura S, Kohno N, Yokoyama A, Naka T.
Sputum Leucine-Rich Alpha-2 Glycoprotein as a Marker of Airway Inflammation in Asthma.
PLoS One. 2016 Sep 9;11(9):e0162672.  [PubMed]

2015

1) Furukawa K, Kawamoto K, Eguchi H, Tanemura M, Tanida T, Tomimaru Y, Akita H, Hama N, Wada H, Kobayashi S, Nonaka Y, Takamatsu S, Shinzaki S, Kumada T, Satomura S, Ito T, Serada S, Naka T, Mori M, Doki Y, Miyoshi E, Nagano H.
Clinicopathological Significance of Leucine-Rich α2-Glycoprotein-1 in Sera of Patients With Pancreatic Cancer.
Pancreas. 2015 Jan;44(1):93-8.  [PubMed]
2) Yang L, Fujimoto M, Murota H, Serada S, Fujimoto M, Honda H, Yamada K, Suzuki K, Nishikawa A, Hosono Y, Yoneda Y, Takehara K, Imura Y, Mimori T, Takeuchi T, Katayama I, Naka T.
Proteomic identification of heterogeneous nuclear ribonucleoprotein K as a novel cold-associated autoantigen in patients with secondary Raynaud's phenomenon.
Rheumatology (Oxford). 2015 Feb;54(2):349-58. [PubMed]
3) Takemoto N, Serada S, Fujimoto M, Honda H, Ohkawara T, Takahashi T, Nomura S, Inohara H, Naka T.
Leucine-rich α-2-glycoprotein promotes TGFβ1-mediated growth suppression in the Lewis lung carcinoma cell lines.
Oncotarget. 2015 May 10;6(13):11009-22.  [PubMed]
4) Sanosaka M, Fujimoto M, Ohkawara T, Nagatake T, Itoh Y, Kagawa M, Kumagai A, Fuchino H, Kunisawa J, Naka T, Takemori H.
Salt-inducible kinase 3 deficiency exacerbates lipopolysaccharide-induced endotoxin shock accompanied by increased levels of pro-inflammatory molecules in mice.
Immunology. 2015 Jun;145(2):268-78.  [PubMed]
5) Fujimoto M, Serada S, Suzuki K, Nishikawa A, Ogata A, Nanki T, Hattori K, Kohsaka H, Miyasaka N, Takeuchi T, Naka T.
Leucine-rich α2 -glycoprotein as a potential biomarker for joint inflammation during anti-interleukin-6 biologic therapy in rheumatoid arthritis.
Arthritis Rheumatol. 2015 May;67(8):2056-60.  [PubMed]
6) Natatsuka R, Takahashi T, Serada S, Fujimoto M, Ookawara T, Nishida T, Hara H, Nishigaki T, Harada E, Murakami T, Miyazaki Y, Makino T, Kurokawa Y, Yamasaki M, Miyata H, Nakajima K, Takiguchi S, Kishimoto T, Mori M, Doki Y, Naka T.
Gene therapy with SOCS1 for gastric cancer induces G2/M arrest and has an antitumour effect on peritoneal carcinomatosis.
Br J Cancer. 2015 Jul 28;113(3):433-42.  [PubMed]
7) Tagami-Nagata N, Serada S, Fujimoto M, Tanemura A, Nakatsuka R, Ohkawara T, Murota H, Kishimoto T, Katayama I, Naka T.
Suppressor of cytokine signalling-1 induces significant preclinical antitumor effect in malignant melanoma cells.
Exp Dermatol. 2015 Nov;24(11):864-71.  [PubMed]
8) Iwahashi C, Fujimoto M, Nomura S, Serada S, Nakai K, Ohguro N, Nishida K, Naka T.
CTLA4-Ig suppresses development of experimental autoimmune uveitis in the induction and effector phases: Comparison with blockade of interleukin-6.
Exp Eye Res. 2015 Nov;140:53-64.  [PubMed]
9) Hiramatsu K, Serada S, Kobiyama K, Nakagawa S, Morimoto A, Matsuzaki S, Ueda Y, Fujimoto M, Yoshino K, Ishii KJ, Enomoto T, Kimura T, Naka T.
CpG oligodeoxynucleotides potentiate the antitumor activity of anti-BST2 antibody.
Cancer Sci. 2015 Oct;106(10):1474-8.  [PubMed]

2014

1) Sadaoka T, Serada S, Kato J, Hayashi M, Gomi Y, Naka T, Yamanishi K, Mori Y.
Varicella-zoster virus ORF49 functions in the efficient production of progeny virus through its interaction with essential tegument protein ORF44.
J Virol. 2014 Jan;88(1):188-201. [PubMed]
2) Ota M, Serada S, Naka T, Mori Y.
MHC class I molecules are incorporated into human herpesvirus-6 viral particles and released into the extracellular environment.
Microbiol Immunol.2014 Feb;58(2):119-25.  [PubMed]
3) Matsuzaki S, Enomoto T, Serada S, Yoshino K, Nagamori S, Morimoto A, Yokoyama T, Kim A, Kimura T, Ueda Y, Fujita M, Fujimoto M, Kanai Y, Kimura T, Naka T.
Annexin A4-conferred platinum resistance is mediated by the copper transporter ATP7A.
Int J Cancer.2014 Apr 15;134(8):1796-809.  [PubMed]
4) Oji Y, Tatsumi N, Fukuda M, Nakatsuka S, Aoyagi S, Hirata E, Nanchi I, Fujiki F, Nakajima H, Yamamoto Y, Shibata S, Nakamura M, Hasegawa K, Takagi S, Fukuda I, Hoshikawa T, Murakami Y, Mori M, Inoue M, Naka T, Tomonaga T, Shimizu Y, Nakagawa M, Hasegawa J, Nezu R, Inohara H, Izumoto S, Nonomura N, Yoshimine T, Okumura M, Morii E, Maeda H, Nishida S, Hosen N, Tsuboi A, Oka Y, Sugiyama H.
The translation elongation factor eEF2 is a novel tumor‑associated antigen overexpressed in various types of cancers.
Int J Oncol.2014 May;44(5):1461-9.  [PubMed]
5) Kotobuki Y, Yang L, Serada S, Tanemura A, Yang F, Nomura S, Kudo A, Izuhara K, Murota H, Fujimoto M, Katayama I, Naka T.
Periostin accelerates human malignant melanoma progression by modifying the melanoma microenvironment.
Pigment Cell Melanoma Res. 2014 Jul;27(4):630-9. [PubMed]
6) Yang L, Murota H, Serada S, Fujimoto M, Kudo A, Naka T, Katayama I.
Histamine contributes to tissue remodeling via periostin expression.
J Invest Dermatol.2014 Aug;134(8):2105-2113. [PubMed]
7) Morimoto A, Serada S, Enomoto T, Kim A, Matsuzaki S, Takahashi T, Ueda Y, Yoshino K, Fujita M, Fujimoto M, Kimura T, Naka T.
Annexin A4 induces platinum resistance in a chloride-and calcium-dependent manner.
Oncotarget. 2014 Sep 15;5(17):7776-87.  [PubMed]

2013

1) Iwahori K, Serada S, Fujimoto M, Ripley B, Nomura S, Mizuguchi H, Shimada K, Takahashi T, Kawase I, Kishimoto T, Naka T.
SOCS-1 gene delivery cooperates with cisplatin plus pemetrexed to exhibit preclinical antitumor activity against malignant pleural mesothelioma.
Int J Cancer.2013 Jan 15;132(2):459-71. [PubMed]
2) Yokoyama T, Enomoto T, Serada S, Morimoto A, Matsuzaki S, Ueda Y, Yoshino K, Fujita M, Kyo S, Iwahori K, Fujimoto M, Kimura T, Naka T.
Plasma membrane proteomics identifies BST2 as a potential therapeutic target in endometrial carcinoma.
Int J Cancer. 2013 Jan 15;132(2):472-84. [PubMed]
3) Shinzaki S, Kuroki E, Iijima H, Tatsunaka N, Ishii M, Fujii H, Kamada Y, Kobayashi T, Shibukawa N, Inoue T, Tsujii M, Takeishi S, Mizushima T, Ogata A, Naka T, Plevy SE, Takehara T, Miyoshi E.
Lectin-based immunoassay for aberrant IgG glycosylation as the biomarker for Crohn's disease.
Inflamm Bowel Dis. 2013 Feb;19(2):321-31. [PubMed]
4) Nishioka C, Ikezoe T, Furihata M, Yang J, Serada S, Naka T, Nobumoto A, Kataoka S, Tsuda M, Udaka K, Yokoyama A.
CD34⁺/CD38⁻ acute myelogenous leukemia cells aberrantly express CD82 which regulates adhesion and survival of leukemia stem cells.
Int J Cancer. 2013 May 1;132(9):2006-19. [PubMed]
5) He P, Kuhara H, Tachibana I, Jin Y, Takeda Y, Tetsumoto S, Minami T, Kohmo S, Hirata H, Takahashi R, Inoue K, Nagatomo I, Kida H, Kijima T, Naka T, Morii E, Kawase I, Kumanogoh A.
Calretinin mediates apoptosis in small cell lung cancer cells expressing tetraspanin CD9.
FEBS Open Bio. 2013 May 10;3:225-30. [PubMed]
6) Tang H, Serada S, Kawabata A, Ota M, Hayashi E, Naka T, Yamanishi K, Mori Y.
CD134 is a cellular receptor specific for human herpesvirus-6B entry.
Proc Natl Acad Sci U S A.2013 May 28;110(22):9096-9. [PubMed]
7) Yamada M, Mugnai G, Serada S, Yagi Y, Naka T, Sekiguchi K.
Substrate-attached materials are enriched with tetraspanins and are analogous to the structures associated with rear-end retraction in migrating cells.
Cell Adhesion & Migration. Cell Adh Migr. 2013 May-Jun;7(3):304-14. [PubMed]
8) Ishii H, Tanabe S, Ueno M, Kubo T, Kayama H, Serada S, Fujimoto M, Takeda K, Naka T, Yamashita T.
ifn-γ-dependent secretion of IL-10 from Th1 cells and microglia/macrophages contributes to functional recovery after spinal cord injury.
Cell Death Dis. 2013 Jul 4;4:e710. [PubMed]
9) Umegaki-Arao N, Tamai K, Nimura K, Serada S, Naka T, Nakano H, Katayama I.
Karyopherin alpha2 is essential for rRNA transcription and protein synthesis in proliferative keratinocytes.
PLoS One.2013 Oct 3;8(10):e76416. [PubMed]
10) Shimada K, Serada S, Fujimoto M, Nomura S, Nakatsuka R, Harada E, Iwahori K, Tachibana I, Takahashi T, Kumanogoh A, Kishimoto T, Naka T.
Molecular mechanism underlying the antiproliferative effect of suppressor of cytokine signaling-1 in non-small-cell lung cancer cells.
Cancer Sci. 2013 Nov;104(11):1483-91. [PubMed]
11) Takahashi T, Serada S, Ako M, Fujimoto M, Miyazaki Y, Nakatsuka R, Ikezoe T, Yokoyama A, Taguchi T, Shimada K, Kurokawa Y, Yamasaki M, Miyata H, Nakajima K, Takiguchi S, Mori M, Doki Y, Naka T, Nishida T.
New findings of kinase switching in gastrointestinal stromal tumor under imatinib using phosphoproteomic analysis.
Int J Cancer.2013 Dec 1;133(11):2737-43. [PubMed]

2012

1) Kitaba S, Murota H, Terao M, Azukizawa H, Terabe F, Shima Y, Fujimoto M, Tanaka T, Naka T, Kishimoto T, Katayama I.
Blockade of interleukin-6 receptor alleviates disease in mouse model of scleroderma.
Am J Pathol. 2012 Jan;180(1):165-76. [PubMed]
2) Souma Y, Nishida T, Serada S, Iwahori K, Takahashi T, Fujimoto M, Ripley B, Nakajima K, Miyazaki Y, Mori M, Doki Y, Sawa Y, Naka T.
Antiproliferative effect of SOCS-1 through the suppression of STAT3 and p38 MAPK activation in gastric cancer cells.
Int J Cancer. Int J Cancer. 2012 Sep 15;131(6):1287-96. [PubMed]
3) Kotobuki Y, Tanemura A, Yang L, Itoi S, Wataya-Kaneda M, Murota H, Fujimoto M, Serada S, Naka T, Katayama I.
Dysregulation of melanocyte function by Th17-related cytokines: significance of Th17 cell infiltration in autoimmune vitiligo vulgaris.
Pigment Cell Melanoma Res. 2012 Mar;25(2):219-30. [PubMed]
4) Serada S, Fujimoto M, Terabe F, Iijima H, Shinzaki S, Matsuzaki S, Ohkawara T, Nezu R, Nakajima S, Kobayashi T, Plevy SE, Takehara T, Naka T.
Serum leucine-rich alpha-2 glycoprotein is a disease activity biomarker in ulcerative colitis.
Inflamm Bowel Dis. 2012 Nov;18(11):2169-79. [PubMed]
5) Ontsuka K, Kotobuki Y, Shiraishi H, Serada S, Ohta S, Tanemura A, Yang L, Fujimoto M, Arima K, Suzuki S, Murota H, Toda S, Kudo A, Conway SJ, Narisawa Y, Katayama I, Izuhara K, Naka T.
Periostin, a matricellular protein, accelerates cutaneous wound repair by activating dermal fibroblasts.
Exp Dermatol.2012 May;21(5):331-6. [PubMed]
6) Iwahori K, Suzuki H, Kishi Y, Fujii Y, Uehara R, Okamoto N, Kobayashi M, Hirashima T, Kawase I, Naka T.
Serum HE4 as a diagnostic and prognostic marker for lung cancer.
Tumour Biol.2012 Aug;33(4):1141-9. [PubMed]
7) Uebi T, Itoh Y, Hatano O, Kumagai A, Sanosaka M, Sasaki T, Sasagawa S, Doi J, Tatsumi K, Mitamura K, Morii E, Aozasa K, Kawamura T, Okumura M, Nakae J, Takikawa H, Fukusato T, Koura M, Nish M, Hamsten A, Silveira A, Bertorello AM, Kitagawa K, Nagaoka Y, Kawahara H, Tomonaga T, Naka T, Ikegawa S, Tsumaki N, Matsuda J, Takemori H.
Involvement of SIK3 in glucose and lipid homeostasis in mice.
PLoS One.2012;7(5):e37803. [PubMed]
8) Tajiri K, Imanaka-Yoshida K, Matsubara A, Tsujimura Y, Hiroe M, Naka T, Shimojo N, Sakai S, Aonuma K, Yasutomi Y.
Suppressor of cytokine signaling 1 DNA administration inhibits inflammatory and pathogenic responses in autoimmune myocarditis.
J Immunol. 2012 Aug 15;189(4):2043-53. [PubMed]
9) Yang L, Serada S, Fujimoto M, Terao M, Kotobuki Y, Kitaba S, Matsui S, Kudo A, Naka T, Murota H, Katayama I.
Periostin facilitates skin sclerosis via PI3K/Akt dependent mechanism in a mouse model of scleroderma.
PLoS One.2012;7(7):e41994. [PubMed]
10) Ishii H, Jin X, Ueno M, Tanabe S, Kubo T, Serada S, Naka T, Yamashita T.
Adoptive transfer of Th1-conditioned lymphocytes promotes axonal remodeling and functional recovery after spinal cord injury.
Cell Death Dis. 2012 Aug 9;3:e363. [PubMed]

2011

1) * Terabe F, Fujimoto M, Serada S, Shinzaki S, Iijima H, Tsujii M, Hayashi N, Nomura S, Kawahata H, Jang MH, Miyasaka M, Mihara M, Ohsugi Y, Kishimoto T, Naka T.
Comparative analysis of the effects of anti-IL-6 receptor mAb and anti-TNF mAb treatment on CD4+ T-cell responses in murine colitis.
Inflamm Bowel Dis. 2011 Feb;17(2):491-502. [PubMed]
2) Iwahori K, Serada S, Fujimoto M, Nomura S, Osaki T, Lee CM, Mizuguchi H, Takahashi T, Ripley B, Okumura M, Kawase I, Kishimoto T, Naka T.
Overexpression of SOCS3 exhibits preclinical antitumor activity against malignant pleural mesothelioma.
Int J Cancer.2011 Aug 15;129(4):1005-17.  [PubMed]
3) Fujimoto M, Nakano M, Terabe F, Kawahata H, Ohkawara T, Han Y, Ripley B, Serada S, Nishikawa T, Kimura A, Nomura S, Kishimoto T, Naka T.
The influence of excessive IL-6 production in vivo on the development and function of Foxp3+ regulatory T cells.
J Immunol. 2011 Jan 1;186(1):32-40. [PubMed]
4) Haruta H, Ohguro N, Fujimoto M, Hohki S, Terabe F, Serada S, Nomura S, Nishida K, Kishimoto T, Naka T.
Blockade of interleukin-6 signaling suppresses not only th17 but also interphotoreceptor retinoid binding protein-specific Th1 by promoting regulatory T cells in experimental autoimmune uveoretinitis.
Invest Ophthalmol Vis Sci. 2011 May 17;52(6):3264-71.  [PubMed]
5) Yamashita T, Iwakura T, Matsui K, Kawaguchi H, Obana M, Hayama A, Maeda M, Izumi Y, Komuro I, Ohsugi Y, Fujimoto M, Naka T, Kishimoto T, Nakayama H, Fujio Y.
IL-6-mediated Th17 differentiation through RORγt is essential for the initiation of experimental autoimmune myocarditis.
Cardiovascular Research. Cardiovasc Res. 2011 Sep 1;91(4):640-8.  [PubMed]
6) Nomura T, Abe Y, Kamada H, Shibata H, Kayamuro H, Inoue M, Kawara T, Arita S, Furuya T, Yamashita T, Nagano K, Yoshikawa T, Yoshioka Y, Mukai Y, Nakagawa S, Taniai M, Ohta T, Serada S, Naka T, Tsunoda S, Tsutsumi Y.
Therapeutic effect of PEGylated TNFR1-selective antagonistic mutant TNF in experimental autoimmune encephalomyelitis mice.
J Control Release.2011 Jan 5;149(1):8-14. [PubMed]

2010

1) * Serada S, Fujimoto M, Ogata A, Terabe F, Hirano T, Iijima H, Shinzaki S, Nishikawa T, Ohkawara T, Iwahori K, Ohguro N, Kishimoto T, Naka T.
iTRAQ-based proteomic identification of leucine-rich alpha-2 glycoprotein as a novel inflammatory biomarker in autoimmune diseases.
Ann Rheum Dis. 2010 Apr;69(4):770-4. [PubMed]
2) Akita H, Kogure K, Moriguchi R, Nakamura Y, Higashi T, Nakamura T, Serada S, Fujimoto M, Naka T, Futaki S, Harashima H.
Nanoparticles for ex vivo siRNA delivery to dendritic cells for cancer vaccines: programmed endosomal escape and dissociation.
J Control Release.2010 May 10;143(3):311-7. [PubMed]
3) * Ripley BJ, Fujimoto M, Serada S, Ohkawara T, Nishikawa T, Terabe F, Matsukawa Y, Stephanou A, Knight RA, Isenberg DA, Latchman DS, Kishimoto T, Naka T.
Green tea polyphenol epigallocatechin gallate inhibits cell signaling by inducing SOCS1 gene expression.
Int Immunol.2010 May;22(5):359-66. [PubMed]
4) * Hohki S, Ohguro N, Haruta H, Nakai K, Terabe F, Serada S, Fujimoto M, Nomura S, Kawahata H, Kishimoto T, Naka T.
Blockade of interleukin-6 signaling suppresses experimental autoimmune uveoretinitis by the inhibition of inflammatory Th17 responses.
Exp Eye Res. 2010 Aug;91(2):162-70. [PubMed]

2009

1) * Kim A, Enomoto T, Serada S, Ueda Y, Takahashi T, Ripley B, Miyatake T, Fujita M, Lee CM, Morimoto K, Fujimoto M, Kimura T, Naka T.
Enhanced expression of Annexin A4 in clear cell carcinoma of the ovary and its association with chemoresistance to carboplatin.
Int J Cancer.2009 Nov 15;125(10):2316-22. [PubMed]
2) Kimura A, Naka T, Nakahama T, Chinen I, Masuda K, Nohara K, Fujii-Kuriyama Y, Kishimoto T.
Aryl hydrocarbon receptor in combination with Stat1 regulates LPS-induced inflammatory responses.
J Exp Med. 2009 Aug 31;206(9):2027-35. [PubMed]
3) Tanaka S, Yoshimoto T, Naka T, Nakae S, Iwakura Y, Cua D, Kubo M.
Natural occurring IL-17 producing T cells regulate the initial phase of neutrophil mediated airway responses.
J Immunol.2009 Dec 1;183(11):7523-30. [PubMed]

2008

1) * Takahashi T, Naka T, Fujimoto M, Serada S, Horino J, Terabe F, Hirota S, Miyoshi E, Hirai T, Nakajima K, Nishitani A, Souma Y, Sawa Y, Nishida T.
Aberrant expression of glycosylation in juvenile gastrointestinal stromal tumors.
Proteomics Clin Appl. 2008 Sep;2(9):1246-54. [PubMed]
2) Nakashima T, Yokoyama A, Onari Y, Shoda H, Haruta Y, Hattori N, Naka T, Kohno N.
Suppressor of cytokine signaling 1 inhibits pulmonary inflammation and fibrosis.
J Allergy Clin Immunol. 2008 May;121(5):1269-76. [PubMed]
3) Seki E, Kondo Y, Iimuro Y, Naka T, Son G, Kishimoto T, Fujimoto J, Tsutsui H, Nakanishi K.
Demonstration of cooperative contribution of MET- and EGFR-mediated STAT3 phosphorylation to liver regeneration by exogenous suppressor of cytokine signalings.
J Hepatol. 2008 Feb;48(2):237-45. [PubMed]
4) Nishikawa T, Hagihara K, Serada S, Isobe T, Matsumura A, Song J, Tanaka T, Kawase I, Naka T, Yoshizaki K.
Transcriptional complex formation of c-Fos, STAT3, and hepatocyte NF-1 alpha is essential for cytokine-driven C-reactive protein gene expression.
J Immunol. 2008 Mar 1;180(5):3492-501. [PubMed]
5) Yamaguchi H, Takagi J, Miyamae T, Yokota S, Fujimoto T, Nakamura S, Ohshima S, Naka T, Nagata S.
Milk fat globule EGF factor 8 in the serum of human patients of systemic lupus erythematosus.
J Leukoc Biol.2008 May;83(5):1300-7. [PubMed]
6) Serada S, Fujimoto M, Mihara M, Koike N, Ohsugi Y, Nomura S, Yoshida H, Nishikawa T, Terabe F, Ohkawara T, Takahashi T, Ripley B, Kimura A, Kishimoto T, Naka T.
IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis.
Proc Natl Acad Sci U S A.2008 Jul 1;105(26):9041-6. [PubMed]
7) * Horino J, Fujimoto M, Terabe F, Serada S, Takahashi T, Soma Y, Tanaka K, Chinen T, Yoshimura A, Nomura S, Kawase I, Hayashi N, Kishimoto T, Naka T.
Suppressor of cytokine signaling-1 ameliorates dextran sulfate sodium-induced colitis in mice.
Int Immunol. 2008 Jun;20(6):753-62. [PubMed]
8) Yu CR, Mahdi RM, Liu X, Zhang A, Naka T, Kishimoto T, Egwuagu CE.
SOCS1 regulates CCR7 expression and migration of CD4+ T cells into peripheral tissues.
J Immunol.2008 Jul 15;181(2):1190-8. [PubMed]
9) Kimura A, Naka T, Nohara K, Fujii-Kuriyama Y, Kishimoto T.
Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells.
Proc Natl Acad Sci U S A.2008 Jul 15;105(28):9721-6. [PubMed]
10) * Iwahori K1, Osaki T, Serada S, Fujimoto M, Suzuki H, Kishi Y, Yokoyama A, Hamada H, Fujii Y, Yamaguchi K, Hirashima T, Matsui K, Tachibana I, Nakamura Y, Kawase I, Naka T.
Megakaryocyte potentiating factor as a tumor marker of malignant pleural mesothelioma: evaluation in comparison with mesothelin.
Lung Cancer. 2008 Oct;62(1):45-54. [PubMed]
11) * Fujimoto M, Serada S, Mihara M, Uchiyama Y, Yoshida H, Koike N, Ohsugi Y, Nishikawa T, Ripley B, Kimura A, Kishimoto T, Naka T.
Interleukin-6 blockade suppresses autoimmune arthritis in mice by the inhibition of inflammatory Th17 responses.
Arthritis Rheum. 2008 Dec;58(12):3710-9. [PubMed]

2007

1) Shoda H, Yokoyama A, Nishino R, Nakashima T, Ishikawa N, Haruta Y, Hattori N, Naka T, Kohno N.
Overproduction of collagen and diminished SOCS1 expression are causally linked in fibroblasts from idiopathic pulmonary fibrosis.
Biochem Biophys Res Commun.2007 Feb 23;353(4):1004-10. [PubMed]
2) Kanatani Y, Usui I, Ishizuka K, Bukhari A, Fujisaka S, Urakaze M, Haruta T, Kishimoto T, Naka T, Kobayashi M.
Effects of pioglitazone on suppressor of cytokine signaling 3 expression: potential mechanisms for its effects on insulin sensitivity and adiponectin expression.
Diabetes. 2007 Mar;56(3):795-803. [PubMed]
3) Ohshima M, Yokoyama A, Ohnishi H, Hamada H, Kohno N, Higaki J, Naka T.
Overexpression of suppressor of cytokine signalling-5 augments eosinophilic airway inflammation in mice.
Clin Exp Allergy. 2007 May;37(5):735-42. [PubMed]
4) * He P, Naka T, Serada S, Fujimoto M, Tanaka T, Hashimoto S, Shima Y, Yamadori T, Suzuki H, Hirashima T, Matsui K, Shiono H, Okumura M, Nishida T, Tachibana I, Norioka N, Norioka S, Kawase I.
Proteomics-based identification of alpha-enolase as a tumor antigen in non-small lung cancer.
Cancer Sci. 2007 Aug;98(8):1234-40. [PubMed]
5) Kimura A, Naka T, Kishimoto T.
IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells.
Proc Natl Acad Sci U S A.2007 Jul 17;104(29):12099-104. [PubMed]
6) * Serada S, Fujimoto M, Takahashi T, He P, Hayashi A, Tanaka T, Hagihara K, Yamadori T, Mochizuki M, Norioka N, Norioka S, Kawase I, Naka T.
Proteomic analysis of autoantigens associated with systemic lupus erythematosus.
Proteomics-clinical applications. Proteomics Clin Appl. 2007 Feb;1(2):185-91. [PubMed]

2006

1) Hirano T, Higa S, Arimitsu J, Naka T, Ogata A, Shima Y, Fujimoto M, Yamadori T, Ohkawara T, Kuwabara Y, Kawai M, Matsuda H, Yoshikawa M, Maezaki N, Tanaka T, Kawase I, Tanaka T.
Luteolin, a flavonoid, inhibits AP-1 activation by basophils.
Biochem Biophys Res Commun.2006 Feb 3;340(1):1-7. [PubMed]
2) * Ouyang X, Fujimoto M, Nakagawa R, Serada S, Tanaka T, Nomura S, Kawase I, Kishimoto T, Naka T.
SOCS-2 interferes with myotube formation and potentiates osteoblast differentiation through upregulation of JunB in C2C12 cells.
J Cell Physiol. 2006 May;207(2):428-36. [PubMed]
3) Arimitsu J, Hirano T, Higa S, Kawai M, Naka T, Ogata A, Shima Y, Fujimoto M, Yamadori T, Hagiwara K, Ohgawara T, Kuwabara Y, Kawase I, Tanaka T.
IL-18 gene polymorphisms affect IL-18 production capability by monocytes.
Biochem Biophys Res Commun.2006 Apr 21;342(4):1413-6. [PubMed]
4) Hirano T, Arimitsu J, Higa S, Naka T, Ogata A, Shima Y, Fujimoto M, Yamadori T, Ohkawara T, Kuwabara Y, Kawai M, Kawase I, Tanaka T.
Luteolin, a flavonoid, inhibits CD40 ligand expression by activated human basophils.
Int Arch Allergy Immunol. 2006;140(2):150-6. Epub 2006 Apr 4. [PubMed]
5) * Abe T, Nomura S, Nakagawa R, Fujimoto M, Kawase I, Naka T.
Osteoblast differentiation is impaired in SOCS-1-deficient mice.
J Bone Miner Metab.2006;24(4):283-90. [PubMed]
6) Ogata Y, Osaki T, Naka T, Iwahori K, Furukawa M, Nagatomo I, Kijima T, Kumagai T, Yoshida M, Tachibana I, Kawase I.
Overexpression of PIAS3 suppresses cell growth and restores the drug sensitivity of human lung cancer cells in association with PI3-K/Akt inactivation.
Neoplasia. 2006 Oct;8(10):817-25. [PubMed]

2005

1) Imanaka K, Tamura S, Fukui K, Ito N, Kiso S, Imai Y, Naka T, Kishimoto T, Kawata S, Shinomura Y; Kansai Viral Hepatitis Research Group.
Enhanced expression of suppressor of cytokine signalling-1 in the liver of chronic hepatitis C: possible involvement in resistance to interferon therapy.
J Viral Hepat. 2005 Mar;12(2):130-8. [PubMed]
2) Seki E, Tsutsui H, Iimuro Y, Naka T, Son G, Akira S, Kishimoto T, Nakanishi K, Fujimoto J.
Contribution of Toll-like receptor/myeloid differentiation factor 88 signaling to murine liver regeneration.
Hepatology. 2005 Mar;41(3):443-50. [PubMed]
3) Inaba M, Saito H, Fujimoto M, Sumitani S, Ohkawara T, Tanaka T, Kouhara H, Kasayama S, Kawase I, Kishimoto T, Naka T.
Suppressor of cytokine signaling 1 suppresses muscle differentiation through modulation of IGF-I receptor signal transduction.
Biochem Biophys Res Commun.2005 Mar 25; [PubMed]
4) Kimura A, Naka T, Muta T, Takeuchi O, Akira S, Kawase I, Kishimoto T.
Suppressor of cytokine signaling-1 selectively inhibits LPS-induced IL-6 production by regulating JAK-STAT.
Proc Natl Acad Sci U S A.2005 Nov 22;102(47):17089-94. Epub 2005 Nov 15. [PubMed]

2004

1) * Fujimoto M, Tsutsui H, Xinshou O, Tokumoto M, Watanabe D, Shima Y, Yoshimoto T, Hirakata H, Kawase I, Nakanishi K, Kishimoto T, Naka T.
Inadequate induction of suppressor of cytokine signaling-1 causes systemic autoimmune diseases.
Int Immunol. 2004 Feb;16(2):303-14. [PubMed]
2) Komazaki T, Nagai H, Emi M, Terada Y, Yabe A, Jin E, Kawanami O, Konishi N, Moriyama Y, Naka T, Kishimoto T.
Hypermethylation-associated inactivation of the SOCS-1 gene, a JAK/STAT inhibitor, in human pancreatic cancers.
Jpn J Clin Oncol. 2004 Apr;34(4):191-4. [PubMed]
3) Hirano T, Higa S, Arimitsu J, Naka T, Shima Y, Ohshima S, Fujimoto M, Yamadori T, Kawase I, Tanaka T.
Flavonoids such as luteolin, fisetin and apigenin are inhibitors of interleukin-4 and interleukin-13 production by activated human basophils.
Int Arch Allergy Immunol. 2004 Jun;134(2):135-40. [PubMed]
4) Kimura A, Naka T, Kawase I, and Kishimoto T.
SOCS-1 suppresses TNF-α-induced apoptosis through the regulation of Jak activation.
Int Immunol. 2004; 16: 991-999, [PubMed]
5) Watanabe D, Ezoe S, Fujimoto M, Kimura A, Saito Y, Nagai H, Tachibana I, Matsumura I, Tanaka T, Kanegane H, Miyawaki T, Emi M, Kanakura Y, Kawase I, Naka T, Kishimoto T.
Suppressor of cytokine signalling-1 gene silencing in acute myeloid leukaemia and human haematopoietic cell lines.
Br J Haematol. 2004 Sep;126(5):726-35. [PubMed]

2003

1) Nagai H, Naka T, Terada Y, Komazaki T, Yabe A, Jin E, Kawanami O, Kishimoto T, Konishi N, Nakamura M, Kobayashi Y, Emi M.
Hypermethylation assiciated with inactivation of the SOCS-1 gene, a JAK/STAT inhibitor, in human hepatoblastomas.
J Hum Genet. 2003;48(2):65-9. [PubMed]
2) Ohnishi H, Yokoyama A, Yasuhara Y, Watanabe A, Naka T, Hamada H, Abe M, Nishimura K, Higaki J, Ikezoe J, Kohno N.
Circulating KL-6 levels in patients with drug induced pneumonitis.
Thorax. 2003 Oct;58(10):872-5. [PubMed]

2002

1) Sakuda S, Tamura S, Yamada A, Miyagawa Ji, Yamamoto K, Kiso S, Ito N, Imanaka K, Wada A, Naka T, Kishimoto T, Kawata S, Matsuzawa Y.
Activation of signal transducer and activator transcription 3 and expression of suppressor of cytokine signal 1 during liver regeneration in rats.
J Hepatol.2002 Mar;36(3):378-84. [PubMed]
2) Fujiwara H, Morita A, Kobayashi H, Hamano K, Fujiwara Y, Hirai K, Yano M, Naka T, Saeki Y.
Infiltrating eosinophils and eotaxin: their association with idiopathic eosinophilic esophagitis.
Ann Allergy Asthma Immunol. 2002 Oct;89(4):429-32. [PubMed]
3) * Fujimoto M, Tsutsui H, Yumikura-Futatsugi S, Ueda H, Xingshou O, Abe T, Kawase I, Nakanishi K, Kishimoto T, Naka T.
A regulatory role for suppressor of cytokine signaling-1 in T(h) polarization in vivo.
Int Immunol. 2002 Nov;14(11):1343-50. [PubMed]
4) Seki Y, Hayashi K, Matsumoto A, Seki N, Tsukada J, Ransom J, Naka T, Kishimoto T, Yoshimura A, Kubo M.
Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation.
Proc. Natl. Acad. Sci. USA. 2002 Oct 1;99(20):13003-8. [PubMed]
5) Nakagawa R, Naka T, Tsutsui H, Fujimoto M, Kimura A, Abe T, Seki E, Sato S, Takeuchi O, Takeda K, Akira S, Yamanishi K, Kawase I, Nakanishi K, Kishimoto T.
SOCS-1 participates in negative regulation of LPS responses.
Immunity. 2002 Nov;17(5):677-87. [PubMed]

2001

1) Kawazoe Y, Naka T, Fujimoto M, Kohzaki H, Morita Y, Narazaki M, Okumura K, Saitoh H, Nakagawa R, Uchiyama Y, Akira S, Kishimoto T.
Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1)/suppressor of cytokine signaling 1 (SOCS1) inhibits insulin signal transduction pathway through modulating insulin receptor substrate 1 (IRS-1) phosphorylation.
J Exp Med.2001 Jan 15;193(2):263-9. [PubMed]
2) * Naka T, Tsutsui H, Fujimoto M, Kawazoe Y, Kohzaki H, Morita Y, Nakagawa R, Narazaki M, Adachi K, Yoshimoto T, Nakanishi K, Kishimoto T.
SOCS-1/SSI-1-deficient NKT cells participate in severe hepatitis through dysregulated cross-talk inhibition of IFN-and IL-4 signaling in vivo.
Immunnity. 2001; 14: 535-545. [PubMed]

2000年以前

1) Morita Y, Naka T, Kawazoe Y, Fujimoto M, Narazaki M, Nakagawa R, Fukuyama H, Nagata S, Kishimoto T.
Signals transducers and activators of transcription (STAT)-induced STAT inhibitor-1 (SSI-1)/suppressor of cytokine signaling-1 (SOCS-1) suppresses tumor necrosis factor alpha-induced cell death in fibroblasts.
Proc. Natl. Acad. Sci. USA. 2000 May 9;97(10):5405-10. [PubMed]
2) Saito H, Morita Y, Fujimoto M, Narazaki M, Naka T, Kishimoto T.
IFN regulatory factor-1-mediated transcriptional activation of mouse STAT-induced STAT inhibitor-1 gene promoter by IFN-gamma.
J Immunol. 2000 Jun 1;164(11):5833-43. [PubMed]
3) Fujimoto M, Naka T, Nakagawa R, Kawazoe Y, Morita Y, Tateishi A, Okumura K, Narazaki M, Kishimoto T.
Defective thymocyte development and perturbed homeostasis of T cells in STAT-induced STAT inhibitor-1/suppressors of cytokine signaling-1 transgenic mice.
J Immunol. 2000 Aug 15;165(4):1799-806. [PubMed]
4) * Naka T, Matsumoto T, Narazaki M, Fujimoto M, Morita Y, Ohsawa Y, Saito H, Nagasawa T, Uchiyama Y, Kishimoto T.
Accelerated apoptosis of lymphocytes by augmented induction of Bax in SSI-1 (STAT-induced STAT inhibitor-1) deficient mice.
Proc Natl Acad Sci USA. 1998 Dec 22;95(26):15577-82. [PubMed]
5) Narazaki M, Fujimoto M, Matsumoto T, Morita Y, Saito H, Kajita T, Yoshizaki K, Naka T, Kishimoto T.
Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling.
Proc. Natl. Acad. Sci. USA. 1998 Oct 27;95(22):13130-4. [PubMed]
6) Minamoto S, Ikegame K, Ueno K, Narazaki M, Naka T, Yamamoto H, Matsumoto T, Saito H, Hosoe S, Kishimoto T.
Cloning and functional analysis of new members of STAT induced STAT inhibitor (SSI) family: SSI-2 and SSI-3.
Biochem Biophys Res Commun.1997 Aug 8;237(1):79-83. [PubMed]
7) * Naka T, Narasaki M, Hirata M, Matsumoto T, Minamoto S, Aono A, Nishimoto N, Kajita T, Taga T, Yoshizaki K, Akira S, Kishimoto T.
Structure and function of a new STAT-induced STAT inhibitor.
Nature. 1997 Jun 26;387(6636):924-9. [PubMed]
8) Ochi H, Tanaka T, Katada Y, Naka T, Aitani M, Hashimoto S, Maeda K, Toyoshima K, Igarashi T, Suemura M, Kishimoto T.
Peripheral blood T lymphocytes and basophils, freshly isolated from house-dust-mite-sensitive patients, produce interleukin-4 in response to allergen-specific stimulation.
Int Arch Allergy Immunol. 1996 Nov;111(3):253-61. [PubMed]
9) Ochi H, Tanaka T, Katada Y, Naka T, Aitani M, Hashimoto S, Maeda K, Toyoshima K, Igarashi T, Suemura M.
Functional disturbance of naive T lymphocytes in very high IgE producers: depletion of Interleukin-4-induced Interleukin-4-producing cells.
Int Art Allergy Immunol.1996 Mar;109(3):236-42. [PubMed]
10) Fujiwara M, Kikutani H, Suematu S, Naka T, Yoshida K, Yoshida N, Tanaka T, Suemura M, Matsumoto N, Kojima S, Kishimoto T, Yoshida N.
The absence of IgE antibody-mediated augmentation of immune responses in CD23-deficient mice.
Proc. Natl. Acad. Sci. USA. 1994 Jul 19;91(15):6835-9. [PubMed]
11) Kawabe T, Naka T, Yoshida K, Tanaka T, Fujiwara H, Suematsu S, Yoshida N, Kishimoto T, Kikutani H.
The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation.
Immunity. 1994 Jun;1(3):167-78. [PubMed]